Appendix A

CTL Engineering, Inc. 1310 S. Franklin Road Indianapolis, Indiana 46239 Phone: (317) 295-8650 • Fax: (317) 295-8395 www.ctleng.com

Consulting Engineers – Testing – Inspection Services – Analytical Laboratories

July 17, 2023

American Structurepoint, Inc. 9025 River Road, Suite 200 Indianapolis, IN 46240

Attention: Nicholas R. Murphy, PE

Reference: Geotechnical Investigation Des No.: 2005FFE Fortville Pike and CR 300 N Roundabout Hancock County, Indiana CTL Project No.: 22050123IND

Dear Mr. Murphy:

In accordance with your authorization to proceed, CTL Engineering, Inc. has completed the geotechnical investigation on the above referenced site. The report includes the results of the field and laboratory testing, and pavement considerations for the roundabout construction.

Thank you for the opportunity to be of service to you on this project. If you have any questions or need further information, please contact us at (317) 295-8650.

Sincerely,

CTL ENGINEERING, INC.

Anthony L. Mason, PE Senior Geotechnical Engineer

GEOTECHNICAL INVESTIGATION

DES NO: 2005FFE FORTVILLE PIKE AND CR 300 N ROUNDABOUT HANCOCK COUNTY, INDIANA CTL PROJECT NO.: 22050123IND

PREPARED FOR:

AMERICAN STRUCTUREPOINT, INC. 9025 RIVER ROAD, SUITE 200 INDIANAPOLIS, IN 46240

PREPARED BY:

CTL ENGINEERING, INC. 1310 S. FRANKLIN ROAD INDIANAPOLIS, INDIANA 46239

JULY 17, 2023

EXECUTIVE SUMMARY

Des No: 2005FFE Fortville Pike and CR 300 N Roundabout Hancock County, Indiana

<u>**Project Description**</u>: The project involves the construction of a new roundabout at the intersection of Fortville Pike and CR 300 N. Plans for the roundabout construction and the traffic data were not available at the time of this report preparation.

Subsurface Conditions: The test borings drilled on the travel lanes of CR 300 N and Fortville Pike exhibited full depth hot mix asphalt pavement at the surface with approximate thickness of 12 inches overlying subbase consisting of sand and gravel and crushed stone and ranging in thickness of 6 to 18 inches. Highly fractured concrete was encountered between HMA and subbase layer in RB-5. RB-7 encountered topsoil at the surface with approximate thickness of 5.5 inches. Below the existing pavement and/or surficial soil, the test borings encountered soils classified as loam, clay loam, sandy clay loam and sandy clay loam of A-4 and A-6 soil categories.

Pavement Considerations: Subsequent to removal of existing pavement and site grading, the exposed foundation soils should be proofrolled in accordance with INDOT Standard Specifications (ISS) 203.26, where applicable. Depending upon the time of construction and amount of precipitation, the foundation soils may exhibit unstable condition under proofrolling. In such an event, the foundation soils shall be improved before the subgrade treatment is performed. Foundation soil improvement may be performed in general accordance with ISS 203.09. Foundation improvement will be at the discretion of the Engineer.

Based on these considerations and soil data obtained from field and laboratory testing, the new pavement may be designed using the soil parameters below in Table A. The recommended subgrade treatment should be performed in accordance with INDOT Standard Specifications Section 207.

This summary is provided for general information only, and it should not be used as the only source for any design, estimating or bidding. Detailed recommendations are provided in the geotechnical report. The report should be used in its entirety.

Resilient Modulus (M _R) of Prepared Subgrade	10,000
Resilient Modulus (M _R) of Natural Subgrade	3,000
Predominant Soil Type	Sandy Clay Loam (A-6)
Percent Passing #200	60.1
% Silt	38.7
LL	28.5
PL	16.3
PI	12.2
Depth to Water Table	> 7.5 feet below existing grade
Natural Density (pcf) of Natural Subgrade	127
% Moisture of Natural Subgrade	18
Organic Content	
Marl Content	
Sulfate Content (ppm)	
Rock Depth	> 15 feet below existing grade
Filter Fabric Required for Underdrains	918.02(b) Type 1A (NW) *
Subgrade Treatment	Type IBC

Table A- Soil Parameters for Pavement Design

* Underdrains depth < 3 feet.

This summary is provided for general information only, and it should not be used as the only source for any design, estimating or bidding. Detailed recommendations are provided in the geotechnical report. The report should be used in its entirety.

TABLE OF CONTENTS

PAGE

I.	PROJI	ECT LOCATION AND DESCRIPTION	1
II.	SUBS	URFACE INVESTIGATION	1
III.	FINDI	NGS	2
	A.	Subsurface Conditions	2
	B.	Groundwater	2
IV.	DISCU	JSSION AND RECOMMENDATIONS	6
	A.	Pavement Considerations	6
	B.	General Site Preparation and Earthwork	8
V.	CONC	LUDING REMARKS	8

LIST OF TABLES

Table 1– Summary of Foundation Soil Testing	3
Table 2 – Summary of Density and Resilient Modulus Testing	4
Table 3 –Groundwater Readings	5
Table 4 – Soil Parameters for Pavement Design	7
Table 5 – Summary of Areas of Concern	7

LIST OF APPENDICES

APPENDIX A	BORING LOCATION PLAN
APPENDIX B	TEST BORING RECORDS
APPENDIX C	LABORATORY TESTING
APPENDIX D	SOIL PROFILES

I. <u>PROJECT LOCATION AND DESCRIPTION</u>

The project is located at the intersection of Fortville Pike and CR 300 N in the city of Greenfield, Hancock County, Indiana. The project involves the construction of a new roundabout.

Plans for the roundabout construction and the traffic data were not available at the time of this report preparation. However, based on site observations and conversations with American Structurepoint, it is assumed cut/fill for the grade preparation will be less than 3 feet. Once the design plans become available, CTL should be provided the opportunity to review the recommendations within this report.

II. <u>SUBSURFACE INVESTIGATION</u>

Seven roadway test borings, designated as RB-1 through RB-7, were drilled to depths ranging from 7.5 to 15 feet below the existing grade. Test Borings RB-1 through RB-4 were drilled on CR 300 N and Fortville Pike and borings RB-5, RB-6 and RB-7 were drilled within the proposed roundabout area. An offset boring RB-3A was drilled next to the adjacent boring for the purpose of obtaining Shelby tube sample.

The test borings were advanced with a truck mounted drilling rigs utilizing hollow stem augers (HSA) between February 20th and February 22nd, 2023. Standard Penetration tests were conducted using 140-pound automatic hammer falling 30 inches to drive a 2-inch O.D. split barrel samplers for 18 inches.

Soil samples obtained from the drilling operation were preserved in glass jars, visually classified in the field by the drilling crew and in the laboratory by a geotechnical engineer. The recovered soil samples were tested for Natural Moisture Content. Representative soil samples were tested for Grain Size Distribution, Atterberg Limits, Unconfined Compressive Strength, and pH. Standard proctor test was performed on the bulk (bag) samples and resilient modulus test was performed on the Shelby tube samples and remolded bulk samples.

Drilling, soil sampling and laboratory testing were performed following standard geotechnical engineering practices, INDOT and current AASHTO/ASTM procedures. Results from field tests are shown on the enclosed Test Boring Records in Appendix B and laboratory test sheets in Appendix C.

Latitude and longitude coordinates of the test borings were estimated from Google Earth and located in the field using a Trimble Geo7X GPS System. The elevations of the test borings were estimated from the county GIS map. The boring locations and surface

elevations shown on the Boring Location Plans in Appendix A and Test Boring Records in Appendix B should be considered approximate

III. <u>FINDINGS</u>

A. <u>Subsurface Conditions</u>

The test borings drilled on the travel lanes of CR 300 N and Fortville Pike exhibited full depth hot mix asphalt (HMA) pavement with approximate thickness of 12 inches overlying subbase consisting of sand and gravel and crushed stone and ranging in thickness of 6 to 18 inches. Highly fractured concrete was encountered between the HMA and subbase layer in RB-5. RB-7 encountered surficial soil (topsoil) at the surface with an approximate thickness of 5.5 inches.

Below the existing pavement and/or surficial soil, the test borings encountered cohesive soils classified as loam, clay loam, sandy clay loam and sandy clay loam of the A-4 and A-6 soil categories. The cohesive soils exhibited Liquid Limit (LL) values ranging from 19 to 33 percent and Plasticity Index (PI) values of 4 to 16 percent. Natural moisture content values of the foundation soils ranged from 9 to 22 percent. Detailed information of soil type and standard penetration values are shown in the Test Boring Records in Appendix B, laboratory test results in Appendix C and summarized below in Table 1.

Resilient modulus value of 1,649 psi was obtained from the resilient modulus test performed on undisturbed soil samples (Shelby Tubes). Standard proctor test was performed on the bulk samples and resilient modulus test was performed on remolded bulk samples. The test results are included in Appendix C and summarized in Table 2.

The pH values of the subgrade soils ranged from 6.4 to 6.9. Test results are shown on the Summary of Special Laboratory Test Results in Appendix C. Generalized soil profiles of the subsurface conditions are included in Appendix D.

B. <u>Groundwater</u>

Groundwater levels and soil cave-in depths were recorded during and following the drilling operation as shown on the enclosed Test Boring Records in Appendix B and summarized below in Table 3. It should be noted that groundwater levels recorded during this subsurface investigation may not be a reliable indication of long-term groundwater levels as it can take hours or days for groundwater within a borehole to equilibrate and due to fluctuations in groundwater levels due to seasonal variations of precipitation and other factors.

Boring No.	Northing	Easting	Lab No.	Classification	AASHTO	LL	PL	PI	% Passing #200	% Silt	% Clay	Natural Density (pcf)	% Moisture
RB- 1	39.82819	-85.79542	Lab 1	Sandy Clay Loam	A-6	29.9	16	13.9	42.2	21.8	20.4	_	20.1
RB- 2	39.82866	-85.79676	Lab 1	Sandy Clay Loam	A-6	29.9	16	13.9	42.2	21.8	20.4	130.1	18.9
RB- 3	39.82815	-85.79742	Lab 4	Clay Loam	A-4	25	16.8	8.2	69.4	46	23.4	124.9	22.1
RB- 4	39.8275	-85.79606	Lab 1	Sandy Clay Loam	A-6	29.9	16	13.9	42.2	21.8	20.4	_	14.4
RB- 5	39.82825	-85.79658	Lab 3	Loam	A-4	19.3	14.9	4.4	53.8	40.4	13.4	_	9.4
RB- 6	39.82807	-85.79624	Lab 2	Silty Clay Loam	A-6	32.9	17.2	15.7	85.4	59.5	25.9	_	21.2
RB- 7	39.82833	-85.7963	Lab 2	Silty Clay Loam	A-6	32.9	17.2	15.7	85.4	59.5	25.9	_	20.7
Average					28.5	16.3	12.2	60.1	38.7	21.4	127.5	18.1	
Minimum					19.3	14.9	4.4	42.2	21.8	13.4	124.9	9.4	
Maximum					32.9	17.2	15.7	85.4	59.5	25.9	130.1	22.1	
		Standard	Deviation	1		4.9	0.8	4.3	19.9	17.2	4.3	3.7	4.6

Table 1– Summary of Foundation Soil Testing

Boring No.	RB-3	RB-7
Sample Type	Shelby Tube	Bag Sample
Sample No.	ST-1	BS-1
Soil Classification	Clay Loam	Silty Clay Loam
AASHTO Classification	A-4 (3)	A-6 (12)
Liquid Limit (LL)	25.0	32.9
Plastic Limit (PL)	16.8	17.2
Plasticity Index (PI)	8.2	15.7
Sulfate Content (ppm)	<20	
Specific Gravity	2.717	
Loss On Ignition (%)		
Calcium Carbonate (%)		
Maximum Wet Density (pcf)		129.7
Maximum Dry Density (pcf)		111.4
Optimum Moisture Content (%)		16.4
Natural Dry Density (pcf)	102.3	
Resilient Modulus (psi)	1,649	11,232 ⁽¹⁾
- Natural State at Moisture Content (%)	22.1	16.8 (1)

Table 2 – Summary of Density and Resilient Modulus Testing

⁽¹⁾ Resilient Modulus performed at optimum moisture content and within 95% of maximum dry density.

Doring No.	Boring Depth	Latituda	Latitude Longitude		Groundwater I	Readings (feet)	Cave-in depth
Bornig No.	(feet)	Latitude	Longhude	weather	During Drilling	At Completion	(feet)
RB- 1	7.5	39.828191	-85.795418	Sunny	Dry	Dry	5.7
RB- 2	7.5	39.828661	-85.796764	Sunny	Dry	Dry	6.0
RB- 3	7.5	39.828151	-85.797417	Sunny	Dry	Dry	6.0
RB- 4	7.5	39.827500	-85.796061	Sunny	Dry	Dry	5.3
RB- 5	15	39.828248	-85.796578	Sunny	Dry	Dry	13.2
RB- 6	15	39.828072	-85.796236	Sunny	Dry	Dry	13.0
RB- 7 ⁽¹⁾	15	39.828329	-85.796301	Rain	Dry	Dry	6.0

Table 3 – Groundwater Readings

⁽¹⁾ Light rain was observed at the time of drilling.

IV. DISCUSSION AND RECOMMENDATIONS

A. <u>Pavement Considerations</u>

The project involves the construction of a new roundabout at the intersection of Fortville Pike and CR 300 N. Plans for the roundabout construction and the traffic data were not available at the time of this report preparation. The recommendations in this report assume cut/fill heights will be less than 3 feet. Once plans become available, CTL should be provided the opportunity to review the recommendations within this report.

Subsequent to removal of existing pavement and site grading, the exposed foundation soils should be proofrolled in accordance with INDOT Standard Specifications (ISS) 203.26, where applicable. Depending upon the time of construction and amount of precipitation, the foundation soils may exhibit unstable condition under proofrolling. In such an event, the foundation soils shall be improved prior to the subgrade treatment could be performed. Foundation soil improvement may be performed in general accordance with ISS 203.09. Foundation improvement will be at the discretion of the Engineer.

Based on these considerations and soil data obtained from field and laboratory testing, the new pavement may be designed using the soil parameters below in Table 4. The recommended subgrade treatment should be performed in accordance with INDOT Standard Specifications Section 207.

Based on the field and laboratory testing, areas of concern were identified at the locations referenced in Table 5. The general criteria for identifying areas of concern is based on soils having Liquid Limit greater than 50 percent, consistency of less than 5 blows per foot, organic matter of more than 3 percent, undocumented fill and/or in-place moisture content value of 4 percent above the optimum moisture content within approximately 24 inches below existing pavement. The foundation soils in these areas may need improvement in accordance with 203.09.

Resilient Modulus (M _R) of Prepared Subgrade	10,000
Resilient Modulus (M _R) of Natural Subgrade	3,000
Predominant Soil Type	Sandy Clay Loam (A-6)
Percent Passing #200	60.1
% Silt	38.7
LL	28.5
PL	16.3
PI	12.2
Depth to Water Table	> 7.5 feet below existing grade
Natural Density (pcf) of Natural Subgrade	127
% Moisture of Natural Subgrade	18
Organic Content	
Marl Content	
Sulfate Content (ppm)	
Rock Depth	> 15 feet below existing grade
Filter Fabric Required for Underdrains	918.02(b) Type 1A (NW) *
Subgrade Treatment	Type IBC

Table 4 – Soil Parameters for Pavement Design

* Underdrains depth < 3 feet.

Boring No.	Soil Type	Lat	Long	Undocumented Fill	Liquid Limit (%)	Blowcount SPT N-Value (bpf)	Organic Matter (%)	Moisture (%)
RB-7	Silty Clay Loam	39.828329	-85.796301	NA	NA	3	NA	NA

Table 5 – Summary of Areas of Concern

B. <u>General Site Preparation and Earthwork</u>

General site preparation and earthwork and pavement considerations are provided in the following paragraphs.

- 1. All surface objects, pavement, grass, vegetation, topsoil and roots located within the construction limits, shall be cleared and grubbed in accordance with ISS Section 201.
- 2. Subsequent to removal of existing pavement and site grading, the exposed pavement foundation soils should be proofrolled following ISS procedures, where applicable. Soft and/or wet foundation soils not meeting the proofrolling requirements may be encountered within the construction limits, especially in the area of Test Boring RB-7. Unsuitable soils shall be removed and treated in general accordance with ISS 203.09.
- 3. During earthwork operations, care should be taken to provide adequate drainage on the exposed soils. Ditches must be kept open at all times, and the subgrade should be graded at the end of each day, to facilitate good drainage.
- 4. Borrow material needed in fill areas should be in accordance with ISS Section 211. Topsoil and/or organically contaminated materials are not acceptable for use as backfill.
- 5. The backfill should be placed and compacted in accordance with ISS Section 203. The engineered fill should not be placed in a frozen condition or over a frozen subgrade.
- 6. All subgrade soils and pavement materials should conform to the latest issue of INDOT Construction and Material Specifications.

V. <u>CONCLUDING REMARKS</u>

The evaluations, conclusions, and recommendations in this report are based on our interpretation of the field and laboratory data obtained during the exploration, information available at the time of this report, our understanding of the project scope at the time of the report and our experience with similar sites and subsurface conditions using generally accepted geotechnical engineering practices. Although individual test borings are representative of the subsurface conditions at the boring locations on the dates drilled, they are not necessarily representative of the subsurface conditions between boring locations or subsurface conditions during other seasons of the year. If the scope of

the project changes the recommendations may change and may require additional investigation.

During the design process, it is recommended that CTL work with the project designers to confirm that the geotechnical recommendations are properly incorporated into the final plans and specifications, and to assist with establishing criteria for the construction observation and testing. CTL is not responsible for independent conclusions, opinions and recommendations made by others based on the data and the recommendations provided in this report.

The report was prepared by CTL Engineering, Inc. (Consultant) solely for the use of the Client in accordance with an executed contract. The Client's use of or reliance on this report is limited by the terms and conditions of the contract and by the qualifications and limitations stated in the report. It is also acknowledged that the Client's use of and reliance of this report is limited for reasons which include: actual site conditions that may change with time; hidden conditions, not discoverable within the scope of the assessment, may exist at the site; and the scope of the investigation may have been limited by time, budget and other constraints imposed by the Client.

Neither the report, nor its contents, conclusions nor recommendations are intended for the use of any party other than the Client. Consultant and the Client assume no liability for any reliance placed on this report by such party. The rights of the Client under contract may not be assigned to any person or entity, without the consent of the Consultant which consent shall not be unreasonably withheld.

This geotechnical report does not address the environmental conditions of the site. The Consultant is not responsible for consequences or conditions arising from facts that were concealed, withheld, or not fully disclosed at the time the assessment was conducted.

To the fullest extent permitted by law, the Consultant and Client agree to indemnify and hold each other, and their officers and employees harmless from and against claims, damages, losses and expenses arising out of unknown or concealed conditions. Furthermore, neither the Consultant nor its employees shall be liable to the Owner in an amount in excess of the available professional liability insurance coverage of the Consultant. In addition, Client and Consultant agree neither shall be liable for any special, indirect or consequential damages of any kind or nature.

The Consultant's services have been provided consistent with its professional standard of care. No other warranties are made, either expressed or implied.

Sincerely,

CTL ENGINEERING, INC.

hy I M

Anthony L. Mason, P.E. Senior Geotechnical Engineer

WANSIGDEL

Pawan Sigdel, PhD, PE Project Engineer

APPENDIX A

BORING LOCATION PLAN

	BOI	RING LOCATION PLAN			
Courses Coogle Forth		Date	Fortville Pike a	nd CR 300	N Roundabout
4/3/2023 Des No. 2005FFE				FFE	
	CTL ENGINEERING, INC.	Scale	Hancock County, IN		
	GEOTECHNICAL ENGINEERS	None			
	TESTING * INSPECTION	Drawn By	Reviewed By	Page	Project No.
ENGINEERING 😫	LABORATORY SERVICES	PS	AM	1 of 1	22050123IND

APPENDIX B

TEST BORING RECORDS

SOIL DESCRIPTION

NON-COHESIVE SOIL DESCRIPTION

STANDARD PENETRATION BLOWCOUNTS PER FOOT (BPF)

Very Loose	
Loose	6 - 10
Medium Dense	
Dense	
Very Dense	Over 50

COHESIVE SOIL DESCRIPTION

STANDARD PENETRATION BLOWCOUNTS PER FOOT (BPF)

Very Soft	
Soft	
Medium Stiff	
Stiff	
Very Stiff	
Hard	Over 30

GRADATION COMPONENT

SIZE

Boulde	ers	Retained on 8"
Cobble	es	Passing 8" Retained on 3"
Gravel	Pa	assing 3" Retained on #10
Sand	Pass	ing #10 Retained on #200
Silt		0.075 mm to 0.002 mm
Clay		Smaller than 0.002 mm

MOISTURE <u>TERMS</u>

DESCRIPTION

Dry	Powdery
Slightly Moist	Below Plastic Limit
Moist	. Above Plastic, Below Liquid
Verv Moist	At Liquid
Wet	Above Liquid

		TES	T BOR	ING	RECO	ORD								
CLIEN	Г	: American Structurepoint, Inc.						_	BORIN	IG NO.	:	RB	- 1	
PROJE	СТ	: Fortville Pike & CR 300N Roundabout						_	SHEE	Г	:1	_ 0	F	1
ROUTE	NO.	: Fortville Pike and CR 300 N	COUNTY	: Han	cock			_	DATE	START	ED : (02-20	-23	
LOCAT	ION	Greenfield, Indiana						_	DATE	COMPL	.ETED : _	02-20	-23	
DES N	Э.	: 2005FFE F	PROJECT N	0:					CTL P	ROJEC	т NO : :	22050	123IN	D
Boring	Elevatio	on: 909.0 feet Boring Depth: 7.5 fe	et	Boring	Method	: HSA			Ham	mer	:Au	Itoma	tic	
	Latitude	e : 39.828191 Station :		Ria Tvi	be	: B-5 7	' Truck		Ham	mer Effi	ciency84	.4		
	Longitu	de85.795418 Offset :		Casing	Diamete	er: 3.25	" ID		Drille	er/Inspec	ctor : <u>E</u>	D/PS		
				Core S	ize	:			Wea	ther	; . <u>43</u> :Su	inny		
GROUI	NDWA	FER: $ abla$ Encountered at Dry $ abla$ At co	mpletion <u>Dr</u>	У						SE CONTRACTOR	Caved	in at <u>5</u>	5.7 fee	<u>t</u>
ratum evation	imple spth	SOIL/MATERIAL DESCRIPTION		ratum epth	umple umber	oT per 6"	oT per 12"	scovery (%)	oisture ontent (%)	otal Unit eight (pcf)	nconfined ompression (ksf)	A	tterbei Limits	rg
ш	őď			<u>50</u>	ůź	SF	S	Å	Ξŏ	₽≥	Ξŭ	LL	PL	PI
908.0_	-	ASPHALT CONCRETE (12")		1.0										
907.0_		SAND AND GRAVEL BASE (12")			SS-1	12 9	12	100	6.5					
	2.5	Brown, Moist, Stiff to Soft, SANDY CLAY		2		3								
906.0_	_\	A-6, As Lab 1		3.0		3								
			++++ ++++ ++++	+ + *	SS-2	2 2	4	67	20.1					
<u>I</u>	5.0	Brown, Moist, Soft to Medium Stiff, SILTY CLAY LOAM A-6, As Lab 2	+ + + + + + + + + + + - +	* + + *	SS-3	3 3 4	7	100	29.7					
901.5_	7.5_	Bottom of Boring at 7.5 feet	++++ +++ + + + +	+ + + <u>+</u> 7.5	SS-4	3 4 4	8	100	24.6					
	-	Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch.												
	10.0													
	- - 12.5_ -													
	- - 15.0_													
			BORIN	G METH	OD	S	AMPLI	NG ME	THOD		ABBR	EVIA	TIONS	
			HSA - Hollo	w Stem	Auger	SS ST	- Split	Spool by Tuł	n Samp be Sam	ble *	- Han	d Pen id Lim	etrom	eter
	11	Cill Engineering, Inc.	RC - Rock	Coring	ayor	CR	- Rocl	Core	Sampl	le PL	- Plas	tic Lir	nit	
ENGINEL	RING Z	Phone: 317-295-8650	MD - Mud	Drilling		BS	- Bag	Samp	le	PI	- Plas	ticity	Index	
			HA - Hand	d Auger	J	SBS	- Auge - Subl	base S	ings Sample		Pen - Pen	etrom	eter Te	est

HA - Hand Auger

		TES	T BOR	ING	RECO	ORD								
CLIEN	г	American Structurepoint, Inc.						_	BORI	NG NO.	:	RB	- 2	
PROJE	CT	Fortville Pike & CR 300N Roundabout						_	SHEE	т	: 1	0	F	1
ROUTE	E NO.	Fortville Pike and CR 300 N C	OUNTY	: Han	cock				DATE	STARTI	ED :	02-20	-23	
LOCAT	ION	Greenfield, Indiana							DATE	COMPL	ETED : _	02-20	-23	
DES N	0.	: 2005FFE P	ROJECT N	0:					ÇTL P	ROJEC	ΓNO : :	22050	123IN	D
Boring	Elevatio	on: <u>913.0 feet</u> Boring Depth : <u>7.5 fee</u>	et	Boring	Method	: <u>HSA</u>	L .		Ham	nmer	: <u>A</u> ı	utoma	tic	
	Latitude	e: <u>39.828661</u> Station :		Rig Ty	pe	: <u>B-57</u>	Truck		Ham	nmer Effi	ciency84	1.4		
	Longitu	αe <u>-85.796764</u> Line :		Casing	Diamete	r : <u>3.25</u>	" ID		Drille Tem	er/inspeo perature	ctor : <u>EL</u> e :50)° F		
				Core S	ize	:			Wea	ather	:Si	unny		
GROU	NDWA	TER: ∇ Encountered at Dry ∇ At co	mpletion <u>Dr</u>	<u>у</u>	1					La constante da	Caved	in at <u>6</u>	6.0 fee	<u>t</u>
atum vation	nple oth	SOIL/MATERIAL DESCRIPTION		atum	nple nber	r per 6"	T per 12"	covery %)	isture ntent (%)	al Unit ight (pcf)	confined npression (ksf)	A	tterbei Limits	rg
Stra Ele	Sar Dep			Stra	Sar Nur	SP.	SP	Rec	Moi Coi	Tot		LL	PL	PI
912.0_	-	ASPHALT CONCRETE (12")		1.0										
910.5	2.5	CRUSHED STONE (18")		2.5	SS-1	17 14 8	22	100	4.3					
		Thin sand layer encountered from 4.0 feet to feet	94.5		SS-2	7 6 5	11	83	18.9	130.1	5.216 @ 15.0%	30	16	14
	5.0	Brown, Moist, Stiff to Soft, SANDY CLAY LOAM A-6 (2), Lab 1			SS-3	3 3 3	6	100	15.9					
905.5	7.5			7.5	SS-4	3 2 3	5	100	17.6					
	-	Bottom of Boring at 7.5 feet Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch.												
	- 10.0_ - -													
	- - 12.5_ -													
	- - 15.0_													
	TL ERING 2	CTL Engineering, Inc. Phone: 317-295-8650	BORIN HSA - Hollo SFA - Solio RC - Rock MD - Mud MD - Was	G METH ow Stem I Flight A Coring Drilling h Drilling	Auger Auger	SS ST CR BS AC	AMPLI - Split - Shel - Rock - Bag - Auge	NG MI Spoo by Tul Core Samp er Cutt	THOE n Sam be San Samp le ings	ple * nple LL le PL PI D(ABBR - Han - Liqu - Plas - Plas CP - Dyn Boon	EVIA d Per id Lin stic Lin sticity amic	rions netrome nit nit Index Cone	eter

		TES	T BOR	ING	RECO	DRD								
CLIEN	Г	American Structurepoint, Inc.						_	BORIN	IG NO.	:	RB	- 3	
PROJE	СТ	Fortville Pike & CR 300N Roundabout						_	SHEE	Г	:1	0	F	1
ROUTE	E NO.	Fortville Pike and CR 300 N C	OUNTY	: Han	cock			_	DATE	STARTE	ED :	02-20	-23	
LOCAT	ION	Greenfield, Indiana						_	DATE	COMPL	ETED : _	02-20	-23	
DES N	0.	: 2005FFE P	ROJECT	10:					CTL P	ROJECI	NO :	22050	123IN	D
Boring	Elevatio	on: <u>904.0 feet</u> Boring Depth : <u>7.5 fee</u>	et	Boring	Method	: <u>HSA</u>			Ham	mer	: <u>A</u> ı	utoma	tic	
	Latitude	e: <u>39.828151</u> Station :		Rig Ty	ре	: <u>B-57</u>	Truck		Ham	mer Effi	ciency84	4.4		
	Longitu	de <u>-85.797417</u> Offset :		Casing	Diamete	er : <u>3.25</u>	" ID		Drille	er/Inspec	tor : <u>El</u>	<u>)/PS</u>)° F		
				Core S	ize	:			Wea	ther	:Si	unny		
GROU	NDWAT	TER: ∇ Encountered at Dry ∇ At co	mpletion <u>D</u>	ry						Ř	Caved	in at <u>6</u>	6.0 fee	<u>t</u>
atum vation	mple pth	SOIL/MATERIAL DESCRIPTION		atum pth	mple mber	T per 6"	T per 12"	covery (%)	isture ntent (%)	tal Unit eight (pcf)	confined mpression (ksf)	A	tterbe Limits	rg
Ele	Sa De			<u> </u>	Sa Nu	Р	SF	Re	ĕ°	°₽≷	гос	LL	PL	PI
903.0_		ASPHALT CONCRETE (12")		1.0										
902.0_		SAND AND GRAVEL BASE (12")		 12.0	SS-1	15 18 5	23	100	17.3					
	2.5				SS-2	3 4 3	7	100	26.2					
	5.0	Brown, Very Moist, Medium Stiff, CLAY LOA A-4, As Lab 4	AM		SS-3	3 3 3	6	83	29.5					
896.5_	7.5	Bottom of Boring at 7.5 feet Boring backfilled in accordance with INDOT		7.5	SS-4	3 3 4	7	100	27.5					
	- - 10.0 - - -	concrete patch.												
	12.5_ - - 15.0_													
	I	1	BORIN		OD	SA	MPLI	NG ME	THOD		ABBR	EVIA	TIONS	
	TL ERING ^g	CTL Engineering, Inc. Phone: 317-295-8650	HSA - Hollo SFA - Solio RC - Rocl MD - Mud WD - Was	bw Stem d Flight A k Coring Drilling h Drilling	Auger Auger	SS ST CR BS AC	- Split - Shel - Rock - Bag - Auge	Spoor by Tul Core Samp er Cutt	n Samp be Sam Sampl le ings	ole * iple LL le PL PI DC	- Han - Liqu - Plas - Plas CP - Dyn - Dyn	d Per iid Lin stic Lin sticity amic	etrom nit nit Index Cone	eter

Recovery	Moistrue BORIN SHEE DATE CTL P Ham Drille Tem Wea	NG NO. T START COMPL PROJEC nmer nmer Eff er/Inspe ather	:1 :	RB- 0 02-20 02-20 2205C 2205C utoma 1.4 D/PS 3° F unny A LL	3A F -23 0123IN tic tterbe Limits	1
Recovery Č	SHEE DATE DATE CTL P Ham Drille Content (%)	T START COMPL PROJEC nmer nmer Eff er/Inspe aperatura ather	1 _ETED :	O 02-20 02-20 22050 utoma t.4 D/PS 0° F unny A LL	F -23 -23 1123IN tic tic tterbe Limits	1 D rg
Recovery	Moisture CTL P Ham Ham Tem Weat Weat	START COMPI PROJEC Inmer Inmer Eff er/Inspe aperature ather	ED :	02-20 02-20 22050 utoma 1.4 D/PS D° F unny A	-23 -23 123IN tic tterbe	D
Recovery ×	Moisture Moisture Ham Drille Coutent (%)	COMPI PROJEC nmer nmer Eff er/Inspe ather Meiðht (bct)	LETED :	02-20 22050 4.4 D/PS 0° F unny A	-23 0123IN tic tterbe Limits	rg
Recovery (%)	CTL P Ham Ham Drille Coutent (%)	PROJEC nmer nmer Eff er/Inspe aperatur ather	CT NO : A Combression (kst) (kst) Combression	22050 utoma 1.4 D/PS 0° F unny A	tic tic tterbe	rg
Recovery ² (%)	Moisture Content (%) Content (%)	nmer Inmer Eff aperaturn ather Meiðht (bcd)	IA: ficiency84 ctor :E e :4(Scombression (kst)	utoma 1.4 D/PS 0° F unny A LL	tic tterbe Limits	rg
Recovery (%)	Moisture Moisture Content (%)	Total Unit Weight (bcf)	Inconficiency Inctor :El e :4(Combression (kst)	1.4 D/PS D° F unny A	tterbe Limits	rg
Recovery (%)	Moisture Content (%)	Er/Inspe apperature ather Meight (bct)	ctor : <u>4</u> Compression (ksf)	D/PS)° F unny A	tterbe	rg
Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)	unny A	tterbe	rg
Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)	A	tterbe Limits	rg PI
Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)	A	tterbe Limits	rg Pl
Re	ΨŬ	٩	Ξŭ	LL	_	PI
					PL	••
100	22.1	124.9		25	17	8
ING ME t Spoon lby Tub k Core Sampl er Cutti	ETHOD n Samp be Samp le tings) ple * nple LL ple Pl Pl D	ABBF - Har - Liqu L - Plas I - Plas CP - Dyr	EVIA nd Per uid Lin stic Lin sticity amic	FIONS letrom hit nit Index Cone	eter
	NG MI Spoo by Tul k Core Samp er Cutt	NG METHOE Spoon Sam by Tube Sar k Core Samp Sample er Cuttings	NG METHOD Spoon Sample ky Tube Sample c Core Sample Sample P	NG METHOD ABBR Spoon Sample * - Har by Tube Sample * - Har k Core Sample PL - Plas Sample PI - Plas er Cuttings DCP - Dyn	NG METHOD ABBREVIAT Spoon Sample * - Hand Pen by Tube Sample * - Hand Pen LL - Liquid Lim PL Sample PL - Plastic Lir PI - Plasticity PI er Cuttings DCP - Dynamic DCP - Dynamic	NG METHOD ABBREVIATIONS Spoon Sample * - Hand Penetrom by Tube Sample * - Hand Penetrom LL - Liquid Limit PL - Plastic Limit Sample PI - Plastic Limit PI PI - Plastic Limit PI - Plasticity Index or Cuttings DCP - Dynamic Cone - Donamic Cone - Donamic Cone

		TES	T BOF	RING	RECO	ORD								
CLIEN	Г :	American Structurepoint, Inc.						_	BORIN	IG NO.	:	RB	- 4	
PROJE	СТ	Fortville Pike & CR 300N Roundabout						_	SHEE	Г	: 1	0	F	1
ROUTE	ENO.	: Fortville Pike and CR 300 N	COUNTY	: Han	cock				DATE	STARTI	ED : (02-20-	-23	
LOCAT	ION	Greenfield, Indiana						_	DATE	COMPL	ETED : _	02-20-	-23	
DES N	0.	: 2005FFE I	PROJECT	<u>NO:</u>					CTL P	ROJEC	Г NO : :	22050	123IN	D
Boring	Elevatio	on: 904.0 feet Boring Depth: 7.5 fe	et	Boring	Method	:HSA			Ham	mer	:Au	utomat	tic	
	Latitude	e : 39.827500 Station :		Rig Ty	ре	: B- 57	' Truck		Ham	mer Effi	ciency <u>84</u>	.4		
	Longitu	de <u>-85./96061</u> Offset :		Casing) Diamete	r: <u>3.25</u>	" ID		Drille	er/Inspec	tor : <u>EL</u>	<u>)/PS</u> I° F		
		Line		Core S	lize	:			Wea	ther	: <u>50</u> :St	inny		
GROU		TER: $ abla$ Encountered at Dry $ abla$ At co	ompletion <u>D</u>)ry						NA NA	Caved	in at <u>5</u>	.3 feet	<u>t_</u>
ratum evation	ample epth	SOIL/MATERIAL DESCRIPTION	I	ratum epth	ample umber	"T per 6"	PT per 12"	acovery (%)	oisture ontent (%)	otal Unit eight (pcf)	nconfined ompression (ksf)	At	terber Limits	rg
Ξ	۵ŭ		\boxtimes	<u>50</u>	ΰź	IS	0 N	Ř	∑ŭ	Ĕ≥	ΞŬ	LL	PL	PI
903.0_				1.0										
902.3_	- \	SAND AND GRAVEL (8")		1.7	SS-1	11 5	8	100	14 4					
004 5	~ - 1	LOAM				3			14.4					
901.5	2.5	A-6, As Lab 1	///	/ <u> </u> 2.5										
	ΞŅ		+/+	(4)	SS-2	3	8	100	24.8					
	-/^					4	Ũ		21.0					
Ĕ	5.0	Brown, Moist, Medium Stiff, SILTY CLAY LOAM A-6, As Lab 2	+ + + + + # # +	+++++++++++++++++++++++++++++++++++++++	SS-3	3 3 4	7	67	15.0					
896.5_	7.5	Bottom of Boring at 7.5 feet	++++ ++	4 + + 7.5	SS-4	3 3 3	6	83	20.7					
	- - - 10.0_	Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch.	r											
	-													
	12.5													
		<u> </u>												
			BORI	NG METH		SC SC		NG ME	THOD		ABBR		IONS	otor
_			SFA - Soli	iow Stem	Auger	ST	- Spiit - Shel	Spool by Tub	n Samp be Sam	ne ^ Iple LL	- Han - Liqu	id Lim	etrome	eter
	TL	Phone: 317-205-8650	RC - Roc	k Coring	0	CR	- Rock	Core	Sampl	e PL	Plas	tic Lin	nit	
ENGINE	ERING볼	- 1-110He. 317-283-0030	MD - Muo	d Drilling	r	BS	- Bag	Samp	le ince	PI	- Plas	ticity I	ndex	
			HA - Har	nd Auger	J	SBS	- Subl	base S	ample		Pen	etrom	eter Tr	est

HA - Hand Auger

		TES	T BOR	NG I	RECO	DRD								
CLIEN	T :	American Structurepoint, Inc.						_	BORIN	IG NO.	:	RB	- 5	
PROJE	СТ	Fortville Pike & CR 300N Roundabout						_	SHEE	Т	:1	0	F	1
ROUTE	E NO.	Fortville Pike and CR 300 N	COUNTY	: Han	cock				DATE	STARTE	ED :	02-20	-23	
LOCAT	ION	Greenfield, Indiana						_	DATE	COMPL	ETED :	02-20	-23	
DES N	0.	2005FFE	PROJECT N	D:					CTL P	ROJECT	ΓΝΟ :	22050	123IN	D
Boring	Elevatio	on: 909.0 feet Boring Depth: 15.0 f	eet	Boring	Method	: HSA			Ham	mer	:Aı	utoma	tic	
	Latitude	e: 39.828248 Station :		Rig Ty	be	: B-57	Truck		Ham	nmer Effi	ciency84	l.4		
	Longitu	de85.796578 Offset :		Casing	Diamete	er: 3.25"	ID		Drille	er/Inspec	tor : <u>E</u>	<u>)/PS</u>		
		Line		Core S	ize	:			Wea	ther	: . <u></u> :Si	unny		
GROUI	NDWAT	FER: ${ar $\!$	ompletion <u>Dr</u>	Z						No.	L Caved	in at <u>1</u>	3.2 fe	et_
atum vation	mple pth	SOIL/MATERIAL DESCRIPTION	I	atum pth	mple mber	T per 6"	'T per 12"	covery (%)	isture ntent (%)	tal Unit ight (pcf)	confined mpression (ksf)	A	tterbe Limits	rg
Str Ele	Sal De			Str	Sal	SP	SP	Re	နိုင်	Ve	чо	LL	PL	PI
908.0	-	ASPHALT CONCRETE (12")		10										
907.5		CEMENT CONCRETE (6")		1.5	SS-1	50/3"		17	5.8					
		SAND AND GRAVEL BASE (12")												
906.5	2.5	Λ		2.5		5								
])				SS-2	5	8	83	9.4			19	15	4
	-	Brown and Gray, Moist, Medium Stiff to So	ft,			3								
	50	A-4, Lab 3			SS-3	2	4	83	43.5					
	1	(Sand layer with decomposed wood fragme encountered from 3.5 to 4.5 feet druing dril	ent lina)			2								
903.0_	+			6.0		2								
	7.5		+++ +++ ++++ +++++		SS-4	2 3 4	7	100	25.0					
	10.0	Brown, Moist, Medium Stiff to Soft, SILTY CLAY LOAM A-6, As Lab 2	++++ + + + + + + + +++ ++++		SS-5	2 2 3	5	100	27.3					
897.0	-			120										
001.0_	12.5_													
麗	<u>≱</u> -	Brown, Moist, Stiff, LOAM (TILL) A-4, As Lab 5			55.6	4	14	100	11.0					
894.0	15.0	V		15.0	33-0	8	14		11.2					
		Bottom of Boring at 15.0 feet		†										
	-	Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch.												
	17.5_													
	-													
	20.0_													
		1	BORIN	G METH	OD	SA	MPLI	ng me)	ABBR	EVIA	LIONS	
_			HSA - Hollo	w Stem	Auger	SS -	Split	Spool	n Samp	ole *	- Han	d Per	etrom	eter
		CTL Engineering, Inc.	SFA - Solid	Flight A	uger	ST -	Shel	by Tul	be Sam	nple LL ים	- Liqu	id Lin	nit mit	
ENGINE	ERING S	Phone: 317-295-8650	MD - Mud	Drilling		BS -	Bag	Samp	Samp le	PL	- Plas	sticity	Index	
			WD - Wash	n Drilling	1	AC -		er Cutt	ings	DC	CP - Dyn	amic etrom		est

		TES	T BOR	ING	RECO	DRD								
CLIEN	т	: American Structurepoint, Inc.							BORIN	NG NO.	:	RB	- 6	
PROJE	ЕСТ	: Fortville Pike & CR 300N Roundabout							SHEE	т	: 1	0	F	1
ROUT	E NO.	: Fortville Pike and CR 300 N	COUNTY	: Han	cock				DATE	START	ED :	02-20	-23	
LOCA	ΓΙΟΝ	: Greenfield, Indiana						_	DATE	COMPL	ETED :	02-20	-23	
DES N	0.	: 2005FFE	PROJECT N	0:					ÇTL P	ROJEC	TNO:	22050)123IN	ID
Boring	Elevati	on: <u>908.0 feet</u> Boring Depth : <u>15.0 t</u>	feet	Boring	Method	: <u>HSA</u>			Ham	nmer	: <u>A</u> t	utoma	tic	
	Latitud	e : <u>39.828072</u> Station :		Rig Ty	ре	: <u>B-57</u>	' Truck	κ.	Ham	nmer Effi	ciency84	4.4		
	Longitu	lde <u>-85.796236</u>		Casing	Diamete	er : <u>3.25</u>	" ID		- Tem	er/inspeo perature	ctor : <u>El</u> e :50)° F		
				Core S	ize	:			Wea	ther	:Sı	unny		
GROU	NDWA	TER: \checkmark Encountered at Dry \checkmark At c	ompletion <u>Dr</u>	У	1	1	1	1		<u> </u>	Caved	in at <u>1</u>	13.0 fe	et_
ratum evation	mple pth	SOIL/MATERIAL DESCRIPTION	4	ratum pth	mple imber	T per 6"	T per 12"	covery (%)	oisture intent (%)	tal Unit eight (pcf)	iconfined mpression (ksf)	A	tterbe Limits	rg S
1 1 1 1 1 1 1	Desa			<u>D</u> <u></u>	Sa Nu	R	S	Re	ĕΰ	°₽š	Ъõ	LL	PL	PI
907.0	-	ASPHALT CONCRETE (12")		1.0										
906.5	1 1	SAND AND GRAVEL (6")	· · · · · · · · · · · · · · · · · · ·	1.5		8								
	25			*	55-1	6 5	11	83	21.2					
		Brown, Moist, Medium Stiff to Stiff, SILTY	(+)A	4		3								
	-/	A-6. As Lab 2	<i># + + +</i>	*]	SS-2	3 ⊿	7	100	13.3					
	†		++++	4]		5								
903.0	5.0		A	<u>≁</u> 5.0	SS-3	6	14	83	12.0					
		-				8								
	7.5_				SS-4	5 8 11	19	100	11.4					
	-\ 10.0 - -	Brown, Slightly Moist, Stiff to Very Stiff, LO (TILL) A-4, As Lab 5	AM		SS-5	9 13	22	100	10.2					
893.5	12.5_ 12.5_			14.5	SS-6	6 10	23	100	7.0					
893.0	15.0	Brown, Slightly Moist, Medium Dense,		2. 15.0		13								
	-	Bottom of Boring at 15.0 feet												
	- - 17.5_ - -	Boring backfilled in accordance with INDO requirements and pavement restored with concrete patch.	г											
	-													
	20.0_													
												E\// ^ -		
_			HSA - Hollo	w Stem	Auger	SS SS	- Split	Spoo	n Sam	ple *	- Han	d Per	etrom	eter
	TL FERING SE	CTL Engineering, Inc. Phone: 317-295-8650	SFA - Solic RC - Rock MD - Mud WD - Was	I Flight A Coring Drilling h Drilling	Auger	ST CR BS AC	- Shel - Rocl - Bag - Auge	by Tul k Core Samp er Cut	be Sam Samp le tings	nple LL le PL PI D(- Liqu - Plas - Plas - Plas CP - Dyn	iid Lin stic Lin sticity amic	nit nit Index Cone	act

		TES	T BOR	ING	RECO	DRD								
CLIEN	т	American Structurepoint, Inc.						_	BORI	NG NO.	:	RB	- 7	
PROJE	СТ	Fortville Pike & CR 300N Roundabout						_	SHEE	Т	:1	0	F	1
ROUT	E NO.	Fortville Pike and CR 300 N	COUNTY	: Han	cock			_	DATE	STARTE	ED :_	02-22	-23	
LOCAT	ΓΙΟΝ	: <u>Greenfield, Indiana</u>						_	DATE	COMPL	ETED : _	02-22	-23	
DES N	0.	: 2005FFE	PROJECT N	0:					CTL P	ROJECT	ΓΝΟ :	22050	123IN	ID
Boring	Elevatio	Dn: 912.0 feet Boring Depth : 15.0 f	feet	Boring	Method	: <u>HSA</u>			Ham	nmer	: <u>A</u>	utoma	tic	
	Latitude	e : <u>39.828329</u> Station : de -85.796301 Offset		Rig Ty	ре	: <u>B-57</u>	Truck		Han	nmer Effi er/Inspec	ciency <u>84</u> stor	1.4 D/PS		
	Longitu	Line :		Casing	Diamete	er : <u>3.25</u>	" ID		- Tem	perature	: <u>46</u>	5° F		
				Core S	ize	:			Wea	ather	:Ra	ain		
GROU	NDWA ⁻	ΓER: ⊻ Encountered at <u>Dry</u> ⊻ At cα □	ompletion <u>Dr</u>	<u>У</u>			1	1				in at <u>6</u>	6.0 fee	<u>t</u>
atum vation	mple pth	SOIL/MATERIAL DESCRIPTION	I	atum pth	mple mber	T per 6"	T per 12"	covery (%)	isture ntent (%)	tal Unit ight (pcf)	confined mpressior (ksf)	A	tterbe Limits	rg
Str	Sa			Str	Sa Nu	SP	SP	Re	Во Со	Υ ^ο	ာ်ပိ	LL	PL	PI
911.5		TOPSOIL (5.5")	, X . Y	_0.5		1								
			* * + + + +	4	SS-1	1 2 1	3	67	20.7					
	2.5_	Brown, Moist, Very Soft to Medium Stiff, SI CLAY LOAM A-6, As Lab 2	LTY ++++++++++++++++++++++++++++++++++++	* + + +	BS-1 SS-2	2 1 3 2	4	100 78	16.8 15.0	129.4		33	17	16
906.5_	5.0		+ + + +	+ + + 5.5	SS-3	24	6	78	27.6					
<u>ظ</u>	7.5				SS-4	4 5 9	14	100	12.5					
	- 10.0	Brown, Moist to Slightly Moist, Stiff to Hard LOAM (TILL) A-4 (1), Lab 5	,		SS-5	9 15 17	32	100	9.3			20	14	6
898.0_	- 12.5_ - -			<u>.</u> 14.0	55.6	23	52	100	86					
897.0_	15.0	Silt (Visual) Bottom of Boring at 15.0 feet	· ·	<u>15.0</u>		23	52		0.0					
	-	Boring backfilled in accordance with INDOT requirements.	r											
	17.5_													
	20.0													
		·	BORIN	G METH	IOD	SA	AMPLI	ng me)	ABBR	EVIA	L FIONS	
_	, ,		HSA - Hollo	w Stem	Auger	SS ·	- Split	Spool	n Sam	ple *	- Han	d Pen	etrom	eter
	TERING Z	CTL Engineering, Inc. Phone: 317-295-8650	SFA - Solic RC - Rock MD - Mud WD - Was	ı ⊢light A < Coring Drilling h Drilling	auger	ST CR BS AC	- Shel - Rocł - Bag - Auge - Subł	by Tul Core Samp er Cutt	be San Samp le ings	nple LL le PL PI DC	- Liqu - Plas - Plas Plas P - Dyn	and Lim stic Lir sticity amic	nit nit Index Cone	est

APPENDIX C

LABORATORY TESTING

Summary of Classification Test Results Grain Size Distribution Curves Unconfined Compressive Strength Test Results Standard Proctor Test Results Resilient Modulus Test Results Topsoil Analysis Results Specific Gravity Test Results Summary of Special Laboratory Test Results

												Sheet 1 o	of 1
Lab No.	Boring No.	Sample No.	Depth (feet)	Textural Classification	AASHTO Classification	Gravel %	Sand %	Silt %	Clay %	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Moisture %
Lab 1	RB- 2	SS-2	2.5-4.0	SANDY CLAY LOAM	A-6 (2)	5.4	52.4	21.8	20.4	29.9	16.0	13.9	18.9
Lab 2	RB- 7	BS-1	0.0-5.0	SILTY CLAY LOAM	A-6 (12)	3.2	11.3	59.5	25.9	32.9	17.2	15.7	16.8
Lab 3	RB- 5	SS-2	2.5-4.0	LOAM	A-4 (0)	4.5	41.7	40.4	13.4	19.3	14.9	4.4	9.4
Lab 4	RB- 3A	ST-1	2.0-4.0	CLAY LOAM	A-4 (3)	2.9	27.7	46.0	23.4	25.0	16.8	8.2	22.1
Lab 5	RB- 7	SS-5	8.5-10.0	LOAM	A-4 (1)	10.9	31.2	39.8	18.1	20.3	14.3	6.0	9.3

SUMMARY OF CLASSIFICATION TEST RESULTS

Des. No.	:2005FFE
Project Typ	e:Fortville F
Route	Fortville F

ct Type: Fortville Pike & CR 300N Roundabout Fortville Pike and CR 300 N

Location : Greenfield, Indiana

Project No. County

:Hancock

CTL Proj. No.: 22050123IND

INDOT_GRADATION_LL 22050123IND.GPJ

INDOT_GRADATION_LL 22050123IND.GPJ

NDOT_UNCONFINED_SO_NE_RP_22050123IND.GPJ_US_LAB.GDT_4/4/23

Resilient Modulus of Soil (AASHTO T307)

Client:	American Structurepoint, Inc.
Project Name:	Fortville Pike & CR 300N Roundabout; Des No. 2005FFE
Location:	Greenfield, IN
CTL Project. No.:	22050123IND
Sample No.:	ST-1
Sample Location .:	RB-3
Sample Depth:	2.0' - 4.0'
Soil Description:	Clay Loam [A-4 (3)]
Sample Type	Туре II

Specimen Information:

	Diameter (in)	Height (in)	Mass (gm)	Height to Diameter Ratio	Area (in ²)	Volume (in ³)
	2.840	6.058				
	2.857	6.042				
	2.853	6.032				
Average	2.850	6.044	1266.5	2.12	6.38	38.56

Moisture Data & Specimen Properties

Wet Soil mass with tare (gm)	139.90
Dry Soil mass with tare (gm)	120.49
Tare mass (gm)	32.60
Moisture %	22.08
Natural Wet Density (lbs/ft ³)	124.86
	102.28

Liquid Limit	25
Plastic Limit	17
Plasticity Index	8

Permanent Strain:

	(%)
After Conditioning Sequence	0.59
At test Completion	2.21

Remarks / Notes:

RM TEST

Summary Data

Mr = 2999.9 * Sd^{-0.162}

r = -0.3651

RM TEST

Summary Data

Confining Stress S3 psi	Nom. Max. Deviator Stress psi	Mean Deviator Stress psi	Std. Dev. Deviator Stress psi	Mean Bulk Stress psi	Mean Resilient Strain %	Std. Dev. Resilient Strain %	Mean Resilient Modulus psi	Std. Dev. Resilient Modulus psi
5.976	2.000	1.903	0.0067	19.83	0.04	0.00	4229.7	46.327
5.932	4.000	3.779	0.0092	21.58	0.12	0.00	2923.9	113.17
5.976	6.000	5.604	0.0075	23.53	0.17	0.00	2897.3	14.324
5.950	8.000	7.465	0.0172	25.32	0.25	0.00	2677.2	5.7678
5.931	10.00	9.337	0.0088	27.13	0.32	0.00	2626.1	9.6997
3.896	2.000	1.905	0.0073	13.59	0.06	0.00	2818.9	27.364
3.958	4.000	3.696	0.0098	15.57	0.17	0.00	1975.2	11.288
3.937	6.000	5.565	0.0120	17.38	0.24	0.00	2095.9	7.5708
3.923	8.000	7.463	0.0095	19.23	0.30	0.00	2213.5	2.6202
3.916	10.00	9.342	0.0087	21.09	0.36	0.00	2288.3	7.8147
1.923	2.000	1.883	0.0042	7.651	0.07	0.00	2264.1	19.183
1.878	4.000	3.670	0.0094	9.304	0.20	0.01	1593.0	66.474
1.905	6.000	5.544	0.0145	11.26	0.30	0.00	1649.9	7.2256
1.876	8.000	7.434	0.0176	13.06	0.37	0.00	1777.5	11.603
1.889	10.00	9.325	0.0085	14.99	0.42	0.00	1955.0	2.6410

	Project Name: Fortville Pike & CR 300N	Location: Greenfield, IN	Project Number: 22050123IND		
	Boring Number: RB-3	Tester: JO	Checker: SM		
	Sample Number: ST-1	Test Date: 3/23/23	Depth: 2.0' - 4.0'		
	Test Number: Lab 4	Preparation:	Elevation:		
ENGINEERING 볼	Description:				
	Remarks:				

Resilient Modulus of Soil (AASHTO T307)

Client:	American Structurepoint, Inc.
Project Name:	Fortville Pike & CR 300N Roundabout; Des No. 2005FFE
Location:	Greenfield, IN
CTL Project. No.:	22050123IND
Sample No.:	BS-1
Sample Location .:	RB-7
Sample Depth:	0' - 5.0'
Soil Description:	Silty Clay Loam [A-6 (12)]
Sample Type	Type II

Specimen Information:

	Diameter (in)	Height (in)	Mass (gm)	Height to Diameter Ratio	Area (in ²)	Volume (in ³)
	2.807	5.165				
	2.805	5.166				
	2.804	5.168				
Average	2.805	5.166	1087	1.84	6.18	31.93

Moisture Data & Specimen Properties

Wet Soil mass with tare (gm)	136.60
Dry Soil mass with tare (gm)	121.64
Tare mass (gm)	32.50
Moisture %	16.78
Natural Wet Density (lbs/ft ³)	129.42
Dry Density (lbs/ft ³)	110.82

Liquid Limit	33
Plastic Limit	17
Plasticity Index	16

Permanent Strain:

	(%)
After Conditioning Sequence	0.07
At test Completion	0.11

Remarks / Notes:

RM TEST

Summary Data

Mr = 14160 * Sd^{-0.125}

r = -0.44024

	Project Name: Fortville Pike & CR 300N	Location: Greenfield, IN	Project Number: 22050123IND		
	Boring Number: RB-7	Tester: JO	Checker: SM		
	Sample Number: BS-1	Test Date: 3/28/23	Depth: 0' - 5.0'		
	Test Number: Lab 2	Preparation:	Elevation:		
ENGINEERING 2	Description:				
	Remarks:				

RM TEST

Summary Data

Confining Stress S3 psi	Nom. Max. Deviator Stress psi	Mean Deviator Stress psi	Std. Dev. Deviator Stress psi	Mean Bulk Stress psi	Mean Resilient Strain %	Std. Dev. Resilient Strain %	Mean Resilient Modulus psi	Std. Dev. Resilient Modulus psi
5.861	2.000	2.059	0.0154	19.64	0.01	0.00	13715.	200.80
5.865	4.000	4.009	0.0276	21.60	0.03	0.00	11536.	112.59
5.912	6.000	5.994	0.0167	23.73	0.04	0.00	12490.	79.584
5.893	8.000	7.892	0.0040	25.57	0.06	0.00	12463.	30.926
5.917	10.00	9.806	0.0238	27.56	0.10	0.00	9359.9	20.261
3.885	2.000	2.015	0.0222	13.67	0.01	0.00	15014.	200.86
3.894	4.000	4.030	0.0274	15.71	0.02	0.00	15837.	211.31
3.900	6.000	5.983	0.0196	17.68	0.04	0.00	12467.	72.148
3.876	8.000	7.894	0.0174	19.52	0.07	0.00	10988.	50.798
3.876	10.00	9.785	0.0149	21.41	0.09	0.00	9827.4	31.002
1.912	2.000	2.007	0.0160	7.742	0.02	0.00	9515.3	223.11
1.856	4.000	4.013	0.0043	9.581	0.04	0.00	9798.4	39.686
1.918	6.000	5.991	0.0214	11.74	0.05	0.00	11232.	36.513
1.858	8.000	7.884	0.0047	13.46	0.07	0.00	10536.	34.864
1.928	10.00	9.778	0.0152	15.56	0.09	0.00	10230.	21.406

	Project Name: Fortville Pike & CR 300N	Location: Greenfield, IN	Project Number: 22050123IND						
	Boring Number: RB-7	Tester: JO	Checker: SM						
	Sample Number: BS-1	Test Date: 3/28/23	Depth: 0' - 5.0'						
	Test Number: Lab 2	Preparation:	Elevation:						
ENGINEERING 볼	Description:								
	Remarks:								

INDIANA DEPARTMENT OF TRANSPORTATION OFFICE OF GEOTECHNICAL SERVICES

Summary of Existing Topsoil Test Results for use with Plant Growth Layer

Date: 4/4/2023

Des. No.: 2005FFE

Project: Fortville Pike & CR 300N Roundabout

Location: Hancock County, IN

									ANALYSI	S		
REF.		LOCATIO	N		AASHTO T 289	AASHTO T 88 and T 89	AASHTO T 267 and T 21**	Bray P-1 Equivalent	NCRRP 221, Chapt 7***			
Boring Log	Latitude	Longitude	Quardant	Tested Depth	рН	Gravel*	Sand	Silt	Clay	Organic Content	Phosphorus (ppm)	Potassium (ppm)
				(inch)			(% by '	Weight)		(% by wt)		
TS-1	39.828374	-85.796670	NW	3	6.8	7	30	41	22	3.3	30	111
TS-2	39.827978	-85.796486	SW	3	6.7	11	30	47	12	3.6	48	119
TS-3	39.828015	-85.796193	SE	3	6.9	17	41	31	12	3.2	24	100
TS-4	39.828398	-85.796429	NE	3	6.8	2	24	49	25	2.9	25	97
		Acceptable	Ranges per	r 914.01 =	6.0 - 7.3	N/A	5 - 50%	30 - 80%	5 - 30%	3 - 10%**	20 - 80	105 - 250

* For informational purposes only

** In Davies, Gibson, Knox, Pike Posey, and Vanderburgh Counties, AASHTO T 21 shall also be performed. Acceptable range is 4 - 10%

*** North Central Regional Research Publication 221, Chapter 7

Note: All existing topsoil test results presented herein are for information only.

Rev 11/17

CTL Engineering, Inc. Specific Gravity ASTM D 854 / AASHTO T 100 Method B

Client: American Structurepoint, Inc. Project: Fortville Pike & CR 300N Roundabout Project #: 22050123IND Test Number: Lab 4 Date: 4/6/2023 Tech: JO Reviewed by: PS

Soil Classification:	Clay Loam [A-4 (3)]
Percent Passing No. 4 Sieve:	99.37
Material Excluded From Test:	None
Mass of Pycnometer (M _{p):}	86.21
Mass of Pyncometer, Water and Soil	
Solids (M _{pws,t}):	360.70
Test Temperature (°C):	21.0

Sample ID	Specific Gravity (20°C)
RB-3_ST-1_2'-4'	2.716

																She	eet 1 of 2	2
Boring	Sample	Depth	Wet Density (pcf)	Dry Density (pcf)	Qu (ksf)	c (ksf)	Moisture %	Max Dry Density (pcf)	Optimum Moisture %	@ Opt.	Resilient Modulus +2% of Opt.	In-situ	Sulfate (ppm)	Phosphorus (ppm)	Potassium (ppm)	LOI (%)	Calcium Carbonate (%)	pН
RB- 1	SS-1	1.0-2.5					6.5			0 -								
RB- 1	SS-2	2.5-4.0					20.1											
RB- 1	SS-3	4.0-5.5				29.7												
RB- 1	SS-4	6.0-7.5				24.6												
RB- 2	SS-1	1.0-2.5					4.3											
RB- 2	SS-2	2.5-4.0	130.1	111.1	5.216	2.608	18.9											7.1
RB- 2	SS-3	4.0-5.5					15.9											
RB- 2	SS-4	6.0-7.5					17.6											
RB- 3	SS-1	1.0-2.5					17.3											
RB- 3	SS-2	2.5-4.0					26.2											
RB- 3	SS-3	4.0-5.5					29.5											
RB- 3	SS-4	6.0-7.5					27.5											
RB- 3A	ST-1	2.0-4.0	124.9	102.3			22.1					1,649	0					7.0
RB- 4	SS-1	1.0-2.5					14.4											
RB- 4	SS-2	2.5-4.0					24.8											
RB- 4	SS-3	4.0-5.5					15.0											
RB- 4	SS-4	6.0-7.5					20.7											
RB- 5	SS-1	1.0-1.3					5.8											
RB- 5	SS-2	2.5-4.0					9.4											7.4
RB- 5	SS-3	4.0-5.5					43.5									8.1	2.9	
RB- 5	SS-4	6.0-7.5					25.0											
RB- 5	SS-5	8.5-10.0					27.3											
RB- 5	SS-6	13.5-15.0					11.2											
RB- 6	SS-1	1.0-2.5					21.2											
RB- 6	SS-2	2.5-4.0					13.3											
RB- 6	SS-3	4.0-5.5					12.0											
							SU	MMAF	ry of	SPEC	CIAL LA	BOF	RATOF	RY TES	r resu	LTS		
	FT	/	De	s. No.	:2005	FFE							Project I	No. :				
ENC	GINEERING 🛎		Pro	oject Typ	e:Fortv	lle Pike	& CR 30	0N Rou	ndabout				County	: Hane	cock			
CTL E	ngineerin	g, Inc.	Ro	ute	: Fortv	lle Pike	and CR	300 N					CTL Pro	j. No.: <u>22</u> 05	0123IND			
Phone	: 317-29	5-8650	Lo	cation	Gree	nfield, Ir	idiana											

																She	eet 2 of 2	2
Boring	Sample	Depth	Wet Density (pcf)	Dry Density (pcf)	Qu (ksf)	c (ksf)	Moisture %	Max Dry Density (pcf)	Optimum Moisture %	@ Opt	Resilient Modulus +2% of Opt	In-situ	Sulfate (ppm)	Phosphorus (ppm)	Potassium (ppm)	LOI (%)	Calcium Carbonate (%)	pН
RB- 6	SS-4	6.0-7.5					11.4				2,00,000							
RB- 6	SS-5	8.5-10.0					10.2											
RB- 6	SS-6	13.5-15.0					7.0											
RB- 7	BS-1	0.0-5.0	129.4	110.8			16.8	111.4	16.4	11,232								7.0
RB- 7	SS-1	0.5-2.0					20.7											
RB- 7	SS-2	2.0-3.5					15.0											
RB- 7	SS-3	3.5-5.0					27.6											
RB- 7	SS-4	6.0-7.5					12.5											
RB- 7	SS-5	8.5-10.0					9.3											7.0
RB- 7	SS-6	13.5-15.0					8.6											
TS- 1	BS-1	0.0-0.3					21.6							30	111	3.3		6.8
TS- 2	BS-1	0.0-0.3					18.3							48	119	3.6		6.7
TS- 3	BS-1	0.0-0.3					14.5							24	100	3.2		6.9
TS- 4	BS-1	0.0-0.3					21.1							25	97	2.9		6.8

CTL Engineering, Inc. Phone: 317-295-8650

SUMMARY OF SPECIAL LABORATORY TEST RESULTS

Des. No. :2005FFE

Project Type: Fortville Pike & CR 300N Roundabout

Project No.

County :<u>Hancock</u>

CTL Proj. No.: 22050123IND

Route : Fortville Pike and CR 300 N

Location : Greenfield, Indiana

APPENDIX D

SOIL PROFILES

T || 22050123IND GP | INDOT DATA TEMPI ATE

DOT LL 22050123IND.GPJ INDOT DATA TEMPLATE.GDT 4,